The Emerging Nanoweapon of Orthopaedic Surgery.
Keywords:
Emerging Nanoweapon, Orthopaedic SurgeryAbstract
Nanotechnology refers to the manipulation of structure and properties of materials at the nanometer scale(individual atoms ,molecule and supramolecular level) through biological, physical and chemical routes.1 This tiny alteration at the molecular level can cause a larger change. The surface area of nanoparticles ranges from 1 to 100nm and they demonstrate altered or enhanced biological response in contrast to particles with micrometer size surface area.2 The host organism tends to have different response to nanomaterials at cellular and protein level than shown for conventional particles.3 The concept of Nanotechnology was first introduced by Richard Feynman in 1959 and he is known as Father of Nanotechnology.4
References
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110154. doi: 10.1016/j.msec.2019.110154.
Sato M, Webster TJ. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices. 2004 ;1(1):105-114.
Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007 ;28(2):354-369.
Feynman R. There’s plenty of room at the bottom. Eng Sci. 1960;23:22–36.
Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 May-Jun;5(3):191-204.
Pleshko N, Grande DA, Myers KR. Nanotechnology in orthopaedics. J Am Acad Orthop Surg. 2012;20(1):60–62.
Zhang Y, Lim CT, Ramakrishna S, Huang Z. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16:933–946
Szpalski M, Gunzburg R. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics. 2002;25(5 Suppl):601-609.
Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, et al. Molecular MR imaging of melanoma angiogenesis with anb3-targeted paramagnetic nanoparticles. Magn Reson Med. 2005;53:621-627.
Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat. 2005;4:645–650.
Horisawa E, Hirota T, Kawazoe S, Yamada J, Yamamoto H, Takeuchi H, Kawashima Y. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res. 2002;19(4):403-410.
Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613-621.
Yun YH, Eteshola E, Bhattacharya A, Dong Z, Shim JS, Conforti L, Kim D, Schulz MJ, Ahn CH, Watts N. Tiny medicine: nanomaterial-based biosensors. Sensors (Basel). 2009;9(11):9275-9299.
Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater Sci Eng C Mater Biol Appl. 2016;65:425-432.
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science.1999;284:1318-1322.
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112:841-852.
Zhang R, Lee P, Lui VC, Chen Y, Liu X, Lok CN, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015 ;11(8):1949-59.
Sarraf M, Dabbagh A, Razak BA, Tabrizi BN, Hosseini RM, et al. Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V. Mater Des. 2018;154:28-40.
Leea D, Heo DN, Leea SJ, Heoa M, Kimc J, Choi S, et al. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl Surf Sci. 2018;432:300-307.
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60: 1307-1315.
Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regí M, Bruni G, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017;55:493-504.
Wang R, He X, Gao Y, Zhang X, Yao X, Tang B. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants. Mater Sci Eng C Mater Biol Appl. 2017 ;75:7-15.
Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine. 2009;5(3):282-286.
Aghajani Derazkola H, Simchi A. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing. J Mech Behav Biomed Mater. 2018;79:246-253.
Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014 ;2:14017. doi: 10.1038/boneres.2014.17.
Kim J, Gilbert JL. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy. J Biomed Mater Res B Appl Biomater. 2019 ;107(1):178-189.
Hsu WK, Goldstein CL, Shamji MF, Cho SK, Arnold PM, Fehlings MG, et al. Novel Osteobiologics and Biomaterials in the Treatment of Spinal Disorders. Neurosurgery. 2017;80(3S):S100-S107.
Titan Spine Initiates Full U.S. Launch of New nanoLOCK® Surface Technology. Business Wire (2016). Available at: https://www.businesswire.com/news/home/20161013006094/en/Titan-SpineInitiates-Full-U.S.-Launch-New. (Accessed: 10 Jan 2017).
Polyzois I, Nikolopoulos D, Michos I, Patsouris E, Theocharis S. Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol. 2012;32(4):255-269.
